Runge-Kutta Method and Bolck by Block Method to Solve Nonlinear Fredholm-Volterra Integral Equation with Continuous Kernel
نویسندگان
چکیده
منابع مشابه
Block-by-Block Method for Solving Nonlinear Volterra-Fredholm Integral Equation
We consider a nonlinear Volterra-Fredholm integral equation NVFIE of the second kind. The Volterra kernel is time dependent, and the Fredholm kernel is position dependent. Existence and uniqueness of the solution to this equation, under certain conditions, are discussed. The block-byblock method is introduced to solve such equations numerically. Some numerical examples are given to illustrate o...
متن کاملA Method of Solving Nonlinear Mixed Volterra-Fredholm Integral Equation
Abstract In this paper, the representation of the exact solution to the nonlinear Volterra-Fredholm integral equations will be obtained in the reproducing kernel space. The exact solution is represented in the form of series. Its approximate solution is obtained by truncating the series and a new numerical approximate method is obtained. The error of the approximate solution is monotone deceasi...
متن کاملFredholm-volterra Integral Equation with Potential Kernel
A method is used to solve the Fredholm-Volterra integral equation of the first kind in the space L2(Ω)×C(0,T ),Ω = {(x,y) : √ x2+y2 ≤ a}, z = 0, and T <∞. The kernel of the Fredholm integral term considered in the generalized potential form belongs to the class C([Ω]×[Ω]), while the kernel of Volterra integral term is a positive and continuous function that belongs to the class C[0,T ]. Also in...
متن کاملNew Direct Method to Solve Nonlinear Volterra-fredholm Integral and Integro-differential Equations Using Operational Matrix with Block-pulse Functions
A new and effective direct method to determine the numerical solution of specific nonlinear Volterra-Fredholm integral and integro-differential equations is proposed. The method is based on vector forms of block-pulse functions (BPFs). By using BPFs and its operational matrix of integration, an integral or integro-differential equation can be transformed to a nonlinear system of algebraic equat...
متن کاملA Numerical Method for Solving Stochastic Volterra-Fredholm Integral Equation
In this paper, we propose a numerical method based on the generalized hat functions (GHFs) and improved hat functions (IHFs) to find numerical solutions for stochastic Volterra-Fredholm integral equation. To do so, all known and unknown functions are expanded in terms of basic functions and replaced in the original equation. The operational matrices of both basic functions are calculated and em...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Physics
سال: 2020
ISSN: 2327-4352,2327-4379
DOI: 10.4236/jamp.2020.89152